a2 United States Patent

US009270546B2

(10) Patent No.: US 9,270,546 B2

Lehmann et al. 45) Date of Patent: Feb. 23, 2016
(54) SYSTEMS AND/OR METHODS FOR (56) References Cited
ON-DEMAND REPOSITORY
BOOTSTRAPPING AT RUNTIME IN A U.S. PATENT DOCUMENTS
SCALABLE, DISTRIBUTED MULTI-TENANT
8,122,055 B2 2/2012 Grewal et al.
ENVIRONMENT 8,352,941 Bl* 1/2013 Protopopov GOGF 9/45558
718/1
N .
(71) Applicant: Software AG, Darmstadt (DE) 8,333,155 B2 912013 Pinkney ... GOGE 1%370/251%7‘
8,560,699 B1 10/2013 Theimer et al.
3k
(72) Inventors: Mare Lehmann, Blieskastel (DE); 8,793,348 B2 V2014 Ot v G076§9§2/g(1)
Christoph Wagmann, Bexbach (DE) 8,868,582 B2* 10/2014 Fitzerccooooene. GOGF 17/3056
707/758
. 9,104,514 B2* 8/2015 Bravery GOG6F 8/60
(73) Assignee: Software AG, Darmstadt (DE) 9,137,172 B2* 9/2015 Guest HOA4L 47/827
2005/0044301 Al* 2/2005 Vasilevsky GOGF 9/45533
711/1
(*) Notice: Subject to any disclaimer, the term of this 2011/0276963 AL* 11/2011 WU eoovoeoi HO4L. 67/1097
patent is extended or adjusted under 35 718/1
U.S.C. 154(b) by 185 days. (Continued)
OTHER PUBLICATIONS
(21) Appl. No.: 14/198,298 Cabuk, Serdar, et al., “Towards automated security policy enforce-
ment in multi-tenant virtual data centers”, Journal of Computer Secu-
(22) Filed Mar. 5. 2014 rity, vol. 18, Issue 1, IOS Press, Amsterdam, The Netherlands, Jan.
iled: ar. 5, 2010, pp. 89-121.%
(Continued)
(65) Prior Publication Data
' Primary Examiner — Robert Stevens
US 2015/0254290 Al Sep. 10, 2015 (74) Attorney, Agent, or Firm — Nixon & Vanderhye PC
57 ABSTRACT
Gh 21;6211 7130 2006.01 Certain example embodiments relate to techniques for
() dynamically bootstrapping repositories or databases for
HO4L 12/26 (2006.01) newly created tenants at runtime in scalable, distributed
HO4L 29/06 (2006.01) multi-tenant environments. Repositories are maintained for
HO4L 29/08 (2006.01) respective application-tenant combinations. If there is an
(52) U.S.CL existing repository for the application and tenant combination
CPC ... HO4L 43/04 (2013.01); GO6F 17/3056 involved in an incoming request, the request is responded to
(2013.01); HO4L 67/30 (2013 0’1), HO4L 67/42 using that existing repository. However, if this is not the case,
e e (2013.01) anew repository is created dynamically and at runtime. Boot-
. . . ’ strapping is triggered dynamically the first time a client appli-
(58) Field of Classification Search cation tries to access the newly created tenant at runtime. This
CPC GOG6F 17/3056; GOGF 17/30321; GOGF approach advantageously is flexible when it comes to
17/30091; HO4L 67/42; HO4L 67/30; HO4L enabling tenant- and application-specific repositories with
43/04 optional search index mapping (e.g., for searching and/or
L0 G 707/741 other purposes).

See application file for complete search history.

25 Claims, 6 Drawing Sheets

506
e — S ——
Repository Repository DB 1 @ node X|
Aop 1 Aop2
P —
Repostiory Msnds
AppN

TenantB.

App1) | mammbase: £ ____3
Repository Repository ﬁ“‘b
o) (e

50:

Get doo. from app
tonant has licensed

Client
Application

51

end requested doc|
o

User
Management

onan
visioni

Provisioning

Web Application /
Service

lask for specifio
repository of tenant
land app.

516
i

Deliver speific
repository
ves

Repository
exists?
no

520~ [Create index mapping
for permanent

repositories.

US 9,270,546 B2

Page 2
(56) References Cited 2014/0082033 Al* 3/2014 Meriwether GO6F 17/30194
707/827
U.S. PATENT DOCUMENTS 2014/0101649 Al1* 4/2014 Kamble ... GOG6F 9/45558
717/170
2012/0144023 Al* 6/2012 Guest ..ovoevevvn.. HO4I. 61/1511 2014/0324857 Al* 10/2014 Hazelwood GOG6F 17/30595
709/224 707/736
2012/0144024 A1l* 6/2012 L1€€ woovvevveeceonn, GO6F 21/41 2014/0351821 Al* 11/2014 Jamjoom GOGF 9/505
709/224 718/104
2012/0144332 Al* 6/2012 Sola ...cccoovvee.n. GO6F 17/30398 2014/0359594 Al* 122014 Erbe ..o GOGF 8/65
715/769 717/169
2012/0151568 Al* 6/2012 Pieczul .oooovo....... HO4L, 63/0815 2015/0012630 Al* 1/2015 Abuelsaad GO6F 9/5072
726/8 709/223
2012/0174113 Al* 7/2012 Pohlmann GO6F 9/5088 2015/0039650 Al* 2/2015 Andrews GOGF 17/30545
718/104 707/770
2013/0232172 A1* 9/2013 Woodc.e....... GO6F 17/30985 2015/0234651 ALl* 82015 Li o HO04L 67/10
707/780 717/172
2013/0290506 Al* 10/2013 Astete GOG6F 9/45533 2015/0242197 Al* 82015 Alfonso ... GO6F 8/65
709/223 717173
2013/0290960 Al* 10/2013 Astete GO6F 9/47515835 OTHER PUBLICATIONS
2013/0332550 Al* 12/2013 Sureshchandra ... HOAL 2(7)/91/28;‘ Krebs, Rouven, et al., “Architectural Concerns in Multi-Tenant SaaS
2014/0012826 Al* 1/2014 WiSMAD .o GOGF 17/3023 Applications”, CLOSER 2012, Porto, Portugal, Apr. 18-21,2012, pp.
707/695 ~ 426-431.*
2014/0068568 Al* 3/2014 Wisnovsky GO6F 11/636 Das, Sudipto et al., “ElasTraS: An Elastic, Scalable, and Self-Man-
717/128 aging Transactional Database for the Cloud,” ACM Transactions on
2014/0074973 Al* 3/2014 Kumar HO041. 67/32 Database Systems, vol. 38, No. 1, Article 5, Apr. 2013, pp. 5:1-5:45.
709/217 Schiller, Oliver et al., “ProRea—Live Database Migration for Multi-
2014/0075412 Al1* 3/2014 Kannan HO041. 41/5016 tenant RDBMS with Snapshot Isolation,” 16” International Confer-
717/120 ence on Extending Database Technology, Mar. 19-21, 2013, 12 pp.
2014/0075426 Al* 3/2014 West ..oooevvevvvvnienens GOGF 8/65
717/171 * cited by examiner

U.S. Patent Feb. 23,2016 Sheet 1 of 6 US 9,270,546 B2

(Installation A \ (Installation B \
100b\

100a
\

[

~ Web Application A Web Application B

102 A~ """ N 1026 AT TS L,
104a— < 104b—+ <

Repository A Repository B

A 4

|
|
|
|
’ | |
|
AN | AN |
106a—[(* Index | 1060~k [Index |
i || Mapping | i | | Mapping |
| - ! | . !
I | I |
| I | |
: y \ 4 : A 4
1083_\{\~ Search Index A 108 NS Search Index B
| |
| |
L\ / L\ J
N / N e 7/
~— — v

U.S. Patent Feb. 23,2016 Sheet 2 of 6 US 9,270,546 B2

N\
Deploymentin VM A Deployment in VM A
202a~ | -202b
] Web Services for several Web Services for several |/
tenants tenants
204a~ |, -204b
\| Web Application in Tomcat | | Web Application in Tomcat |/
\. /L J
206
\ Load
Balancer
208\‘r ————————————————————— 1
I

Repository ?

212\\ \
Search Index ?

US 9,270,546 B2

Sheet 3 of 6

Feb. 23, 2016

U.S. Patent

aseqgele

A%

[fowsp H

[«

[(s)108s900.4 _i/[mw o

_ 21607 weibo.d _l

WISISAS bunndwon

JUSWaBEUB J8SN | \-g|¢

u uoneonddy gapp

jUswAo[deg UIN

7

.

J
z uoneolddy gom |

JudwAO|da(d puodasS

W

1

J
| uoneonddy gapm M

JUBWAQ|da(])SdiH

.

ucoe

uy0e

—azog
T

N—ezog

—epoc

N7

Jaouejeg
peo

N—pl¢

_ Alowsy _I

| (sposseooid |-
uoneolddy

T]

adineQ el

U.S. Patent

Feb. 23, 2016

A

Sheet 4 of 6

5402

Client application accesses
web application for desired task

\\

A

5404

Obtain tenant ID from
user management system

\\

A

5406

Find repositories of specific tenant,
if already created

\\

A

Web application attempts to access
the database for the tenant

5408

\\

A

S410

Perform operations using target
repository and/or index, if possible

\

A

S412

If the database and/or index is not yet
created, generate components

\

A

S414

Create index mapping for permanent
repositories, as appropriate

\

A

Introduce new index into database,
and/or link with feed, as appropriate

S416

\

End

US 9,270,546 B2

U.S. Patent Feb. 23,2016 Sheet 5 of 6 US 9,270,546 B2

506
4 ! /
App1]1 database1 D
: Repository Repository DB 1 @ node X
App2 | | App 1 App 2
|
AppN]J | N oo
: Tenant A Repository ' P04a
I App N I
. ! J i
e ; ™\ :
App1] | database 1 <R
| Repository Repository ,,:f504b
App4 | | App 1 App 4 |
I
: Tenant B :
. ! _J :
. |
| !
sk for specific
508 502 repository of tenant
and app. 516
\ Get doc. from app /
: tenant has licensed . X —
Client » Web Application / Deliver specific
Application |« Service repository
Send requested doc
51 I
0\ 514
User _ Gettenantid Repository
Management exists?

. , Deliver 518
Registry |, Get server location correct

for specific tenant repository Create specific

‘ repository

312 Register
tenant
Provisionin :
9 X 520\ Create index mapping
514 for permanent

repositories

Fig. 5

U.S. Patent Feb. 23,2016 Sheet 6 of 6 US 9,270,546 B2
to
: | Gets request from an
Return the | :application. Ex.:
requested | | App: App1
content/ I From: Tenant1
/8622 I ;_Type permanent storage
=== ————"—=—7

|
| Web Application / | 502
| Service :

Deliver specific
repository
h

b

I

Compile pattern for lookup for
repository and/or search index

| ~S602

permanent_app1_tenantl

5606
/

Initiate
bootstrapping

yes

Repository
exists?

8610—\

Create main and
technical repositories

S612 S614 S608
N / \ -

Permanent
in pattern?

yes

Create index
mapping for full
text search

Activate plug-in
for metadata
search

S61 6\\

-

Repository bundle with
search enabled

618
™ \

Create initial settings and design
documents for new repository

8620/

Make temporary
repository

Fig. 6

US 9,270,546 B2

1
SYSTEMS AND/OR METHODS FOR
ON-DEMAND REPOSITORY
BOOTSTRAPPING AT RUNTIME IN A
SCALABLE, DISTRIBUTED MULTI-TENANT
ENVIRONMENT

TECHNICAL FIELD

Certain example embodiments described herein relate to
scalable, distributed multi-tenant environments. More par-
ticularly, certain example embodiments described herein
relate to techniques for dynamically bootstrapping reposito-
ries or databases for newly created tenants at runtime in
scalable, distributed multi-tenant environments. In certain
example embodiments, the bootstrapping is triggered
dynamically the first time a client application tries to access a
specific repository related to a newly created tenant at runt-
ime, leading to a flexible approach for enabling tenant- and
application-specific repositories with optional search index
mapping (e.g., for searching and/or other purposes).

BACKGROUND AND SUMMARY OF EXAMPLE
EMBODIMENTS

Computer applications with database connectivity often-
times have been designed such that backend components
(such as, for example, tables, stored procedures, views, and/
or the like), and also the database itself, need to be configured
before the start of the applications that use them. For instance,
relational databases have been used to provide information to
computer applications, and the components of the relational
databases typically are designed and created before such
applications try to access them. As a result, information about
the contents of the databases is needed before a database
server can be started. Although this approach can work well in
small, single-tenant environments, it can becomes more dif-
ficult as complexities are introduced, e.g., by virtue of the size
of'the application growing and/or its functionality increasing,
the number of tenants using the application rising, etc.

One particularly problematic area involves highly distrib-
uted and scalable environments, e.g., of the sort oftentimes
associated with cloud computing scenarios. In the computer
systems architecture world, cloud computing has recently
received some attention. Although there are many competing
definitions for “cloud computing,” it is fairly well accepted
that cloud computing generally involves (1) the delivery of
computing as a service rather than a product, and (2) provid-
ing shared processing and/or storage resources, software,
information, etc., to computers and other devices as an often-
times metered service over a network (typically the Internet).
In a cloud computing environment, end users do not neces-
sarily need to know the physical location and configuration of
the system that delivers the services. Applications typically
are delivered to end-users as the service, enabling transparent
access to the cloud-based resources.

Regardless of whether a cloud computing environment is
implemented, it is not uncommon for every tenant in a multi-
tenant environment to have its own repositories. These reposi-
tories may be used in providing backend database function-
ality and/or the like. Moreover, the number and type(s) of
repositories for a given tenant can vary depending on the
applications actually used by that tenant, and if users associ-
ated with a tenant want to use a specific function of an appli-
cation for the first time, an initial process of creating the
repositories required for that functionality may be triggered.
For instance, an implicated database management system
(DMS) may create several repositories for the tenant includ-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing, for example, one repository for permanent storage, and
perhaps three additional repositories associated with other
technical requirements (e.g., for storing metadata, providing
a search index, enabling caching functionality, etc.). Further
additional repositories for the tenant may need to be created
on demand, e.g., when needed by a different part of the
application (e.g., an application instance) or another service
that uses the application for storing data. Of course, as alluded
to above, it will be appreciated that this description could in
some implementations apply to each tenant in a multi-tenant
system, thereby requiring a large amount of processing dur-
ing runtime by virtue of the need to create many different
repositories for many different tenants, applications, and/or
underlying purposes.

In this regard, in a public cloud installation, e.g., where
tenants can be created and deleted at virtually any time (for
instance, when a customer buys access to a software solution
or cancels an existing contract), it would be desirable to react
to such events as they occur—even if they occurring during
runtime of the associated underlying application. But when a
new tenant is created, the backend may not yet be prepared for
the tenant and/or the application may not have the informa-
tion necessary to connect to the repositories of the newly
created tenant, e.g., if conventional approaches are leveraged.
Thus, it will be appreciated that the dynamic scaling of the
database (or more generally, the data storage service) and the
use of the same database instance for several tenants and
different datasets can be very difficult, particularly if a pre-
defined schema of table structure must be maintained.

In view of the foregoing, it will be appreciated by those
skilled in the art that highly distributed and scalable environ-
ments, like those associated with cloud computing, can often-
times present problems because information regarding what
is needed for creating and/or maintaining a database (or more
generally, a repository) for storing data from specific tenants,
applications, and/or the like, generally is not known and in
fact is sometimes not knowable, at least at startup time. For
instance, it is not always possible to predict when new users
may purchase an application, when current users might ter-
minate their use of an application, when users might change
tenants (e.g., by virtue of a merger, acquisition, reorganiza-
tion, etc.), and so on. Similarly, there may be problems asso-
ciated with changing the schema for differently structured
data, creating new tables, starting a new database server, etc.
These problems may be manifested in scenarios where, for
example, it would be desirable to use the same database for
newly created tenants who want to access their databases or
repositories from a specific part of an application. Addition-
ally, downtime generally is seen as unacceptable in a public
cloud scenario—and it therefore may not be feasible to
repeatedly stop and restart an application, e.g., as new com-
ponents are configured and made available, as new tenants are
introduced, etc.

In conventional, single-tenancy architectures, applications
and/or application instances generally will access databases
or other repositories with predefined structures. Index map-
pings (e.g., used for searching) will be linked to the reposi-
tories. The applications and/or application instances, in turn,
will be configured to access exactly these repositories. All
these components generally will be “hardwired” in the sys-
tem and configured before the various components and/or
associated services are started. As a result, conventional,
single-tenancy architectures generally will implement static,
predefined installations and deployment processes. Indeed, as
alluded to above, the system oftentimes will need to create
repositories that in turn have to be configured with all tables,
stored procedures, views, etc., as well as a “hardwired” index

US 9,270,546 B2

3

mapping for an associated search engine. After that, it
becomes possible to configure the applications and/or appli-
cation instances and start everything in the correct order.

Pitfalls in conventional, single-tenancy architectures can
come into play to an even greater extent when scalability and
multi-tenancy issues are considered, when it oftentimes is not
possible to provide a unique and complete installation for
each tenant, and/or in other situations. Further, conventional,
single-tenancy installations generally involve static and dis-
junct subsystems that are not scalable and/or have difficulties
when attempting to scale. Unique installations generally will
have no connection to one other, thereby implying that the
components used in a first environment cannot be used in
another installed environment, e.g., in order to handle failures
of services of another installation. Yet the ability to provide
failover mechanisms oftentimes is an important feature in
cloud computing scenarios, and the limited ability to provide
them can be problematic. Another problem involves each
installation only being used for one application at a time. For
instance, if two different applications and/or application
instances want to use an application for storing data, it may be
necessary to provide one installation for each application or
application instance.

FIG.11s an example single-tenancy architecture. As shown
in FIG. 1, for a first installation (Installation A), an application
instance (e.g., a web application instance) 100a attempts to
access a predefined repository or database 104a. The infor-
mation needed for accessing this database 104a was config-
ured and stored as application settings before the application
instance 100a was started. At the backend side 1024 in Instal-
lation A, everything is properly configured for a specific
tenant and a specific application instance (in this case, appli-
cation instance 100a). This predefined configuration is “hard-
wired” in the system and cannot be dynamically changed for
another tenant, application, and/or application instance.
Thus, it will be appreciated that each application/tenant (or
application instance/tenant) combination is provided with its
own installation settings to connect to the backend and, in the
FIG. 1 example, separate Installations A and B are provided.
In this regard, a parallel structure to that described in connec-
tion with Installation A is provided for Installation B, with
like reference numerals having the “a” and “b” suffixes being
provided for, and designating like components in, Installa-
tions A and B respectively.

Referring once again to Installation A, the database 104a is
configured with a static repository. Thus, it can only be used
for one application instance (in this case, application instance
100a) and one tenant. If another application instance (e.g.,
application instance 1005) and/or tenant would like to use the
web application, it would need another complete installation
(e.g., as in Installation B) that is unique to that combination.

To be able to search documents and/or objects stored in the
repository 104a, an index mapping 106a that is configured to
match the repository 104a is provided and configured for a
specific application/tenant (or application instance/tenant)
combination. The naming convention for the search index
108a is static and non-unique, and it only works with one
repository 104a and provides one searchable index 108a. As
shown in FIG. 1, there is only one search index per installa-
tion. The index 108a is updated every time a new document is
stored to the permanent repository 104a, e.g., by reading a
“changes feed” using a search plug-in for metadata and an
indexing tool for the full-text search.

There currently are three main approaches to enabling
multi-tenancy and to solving the need for preconfigured data-
bases (e.g., in arrangements where relational databases and/
or the like are used). These main approaches involved shared

10

15

20

25

30

35

40

45

50

55

60

65

4

nothing, shared database, and shared table architectures.
Unfortunately, these approaches do not fit the needs of com-
plex, multi-tenant environments with heavy user bases
because they tend to involve manual steps and tend to not
scale well. Each of these approaches will be described in
greater detail below.

First, in a shared nothing approach, one database is used for
each tenant. Using one database for each tenant implies a
need for some external scripting, e.g., if one tries to enable
new databases for newly created tenants. The control of the
data source, however, is outside the application itself and
cannot dynamically scale because there is no knowledge of
the demands and/or resources available. In a related vein, load
balancing may not be possible, e.g., because the application
cannot assign a heavy load tenant to a database instance that
is capable of handling more traffic. Thus, every tenant is
provided with exactly the same database in this scenario,
regardless of whether there a few users or thousands of users
using a particular service. Although this approach could be
improved by setting up database clusters, such an approach
leads to more complexity and even further reduces the flex-
ibility to react dynamically to changes of the data structure,
database usage of the application, etc.

Second, in a shared database approach, one database is
shared and different schema namespaces are used. This
approach isolates the data from the tenants, but one still needs
to create everything “from scratch™ and outside the applica-
tion itself. In most cases, this unfortunately leads to down-
time, the reliance on and heavy utilization of external scripts,
a database administrator taking these and/or other actions
manually, etc. Indeed, the conventional computer science
wisdom is that it is bad practice to undertake these steps
automatically from within the application, e.g. by using a
Hibernate connector or the like. As a result, this approach
oftentimes brings with it heavy reliance on difficult to main-
tain techniques like reflection (e.g., using a tool like Reflec-
tion available from Attachmate), the use of abstraction frame-
works like Hibernate (available from Red Hat), and/or the
like, even though such techniques are not designed to be used
in these ways.

In addition, in a shared database approach, it oftentimes is
difficult to use a full-text index for every tenant, separated
from the index of every other tenant, because the database
oftentimes uses only one index per database. To achieve the
desired functionality, one may need to further adapt the code,
e.g., to enable full-text searches over specific datasets for the
different tenants, while potentially staying aware of how each
index is shared with other tenants (e.g., in order to avoid
potentially “leaking” information across customers, etc.).
There also exists the same or similar problems regarding the
use of predefined schemas, the inability to react dynamically
(including the inability to be downwardly compatible to
changes), etc., without changing the whole data layer and/or
database schema.

Third, an approach using shared tables (e.g., where differ-
ent prefixes are used to distinguish between data of different
tenants) might be an easy-to-implement approach, but could
also be quite dangerous. When using a shared table approach,
the data of all tenants is stored in the same table. Different
prefixes may, for example, be used to distinguish between
data of different tenants. Unfortunately, however, this
approach may be problematic in terms of security because
access rights in database systems usually can only be speci-
fied on a table level and not, for example, based on table rows.
Data isolation therefore may possibly occur at the application
level and, as a result, it could easily be the case that a tenant
sees the data of another tenant. Additionally, this approach

US 9,270,546 B2

5

could make it difficult to allow tenant specific extensions to
the database schema, as doing so likely would affect all ten-
ants. Resource contention could also be a problem. Moreover,
the pitfalls of the shared nothing and shared database
approaches described above are likely to exist here, as well.

Other approaches have been tried. For example, in a paper
entitled “ProRea-Live Database Migration for Multi-tenant
RDBMS with Snapshot Isolation,” the authors describe an
approach for the migration of multi-tenant databases, com-
bining proactive and reactive database migration approaches.
They review commonly used multi-tenancy models and com-
pare them concerning database migration concepts. Yet this
paper does not describe a bootstrapping process, nor does it
introduce a new multi-tenancy model.

As another example, in a paper entitled “ElasTraS: An
Elastic, Scalable, and Selt-Managing Transactional Database
for the Cloud,” the authors describe a distributed transaction
system for multi-tenant environments using a shared database
process and a process for migration of running transactions
across database instances. It does not, however, cover the
process of repository bootstrapping or configuration.

U.S. Pat. No. 8,122,055 (which is hereby incorporated by
reference herein in its entirety) describes a mechanism for
coordination of a multi-tenant environment. A shared data-
base is used to store information about configuration and
location of unshared tenant databases as well as cross tenant
data. This patent in essence provides an extension of the
well-known “shared nothing” multi-tenancy model summa-
rized above.

By using a user specific launch configuration, U.S. Pat. No.
8,560,699 (which is hereby incorporated by reference herein
in its entirety) describes a technique able to start new
instances of a service (e.g., a database service) that is custom-
ized to fitthe needs of a particular user. In its process, a launch
configuration may be provided by the user or may be gener-
ated automatically by the system. This is a provisioning-
centric approach covering new instances. It does not describe
a way of bootstrapping new repositories without user inter-
action on an already running database instance, however.

It therefore will be appreciated that it would be desirable to
solve one or more of the above-described and/or other prob-
lems. For example, it will be appreciated that it would be
desirable to provide an approach for dynamically setting up
and configuring data repository connectivity in a multi-tenant
web application, on demand and at runtime.

An aspect of certain example embodiments relates to tech-
niques for dynamically setting up and configuring data
repository connectivity in a multi-tenant web application, on
demand and at runtime, e.g., in a cloud computing and/or
other highly distributed and scalable environment.

Another aspect of certain example embodiments relates to
setting up and configuring data repositories while avoiding
manual and/or external scripting approaches, and potentially
in the absence of detailed knowledge about the requests of the
client applications.

Another aspect of certain example embodiments relates to
looking up the location of an already existing repository or, in
case one does not exist, creating a new repository including
all needed technical enhancements (such as, for example,
search indexes, etc.), in order to provide a scalable, flexible,
and fault tolerant arrangement suitable for use in a highly
distributed and scalable environment such as what might be
present in connection with a public and/or private cloud envi-
ronment.

Certain example embodiments thus relate to techniques for
dynamically bootstrapping repositories or databases for
newly created tenants at runtime in scalable, distributed

10

15

20

25

30

35

40

45

50

55

60

65

6

multi-tenant environments. In certain example embodiments,
the bootstrapping is triggered dynamically the first time a
client application tries to access a specific repository related
to a newly created tenant at runtime, leading to a flexible
approach for enabling tenant- and application-specific reposi-
tories with optional search index mapping.

The term “bootstrapping” is used herein and, as will be
appreciated by those skilled in the art, it oftentimes is used
generally to refer to the starting of a self-sustaining process
that is supposed to proceed without external input. In this
context, however, those skilled in the art will further under-
stand that bootstrapping may relate to the basic configuration
of repositories, indexes, tables, views, and/or other compo-
nents, that might be used in a multi-tenant, potentially highly-
distributed and scalable environment (such as a cloud com-
puting environment), e.g., where an application (e.g., a web
application) accesses a database or other repository.

Certain example embodiments create structured reposito-
ries (e.g., databases) for new tenants dynamically at runtime,
with the repository being modeled in means other than the
tabular relations used in relational databases such as a “Not
only SQL” or NoSQL database. The creation of the reposito-
ries may be carried out by a web application or the like and,
apart from or in addition to the creation of repositories, cer-
tain example embodiments may also involve the dynamic
creation of a search index linked to the newly created reposi-
tories. Certain example embodiments may undertake like
actions in connection with the deletion of a tenant (e.g., when
acustomer’s contract with an application provider ends, etc.).

In certain example embodiments, there is provided a
method of managing a distributed, multi-tenant computing
system comprising at least one processor and non-transitory
storage media hosting a plurality of repositories designated
for different respective computing system application-tenant
combinations. A request for data to be obtained using a com-
puting system application is received from a client applica-
tion running on a client device, with the request being asso-
ciated with arequesting computing system application-tenant
combination that is based on a requesting tenant associated
with the client application and the computing system appli-
cation to be used in obtaining the data. A determination is
made, using the computing system, as to whether the non-
transitory storage media already stores a repository desig-
nated for the requesting computing system application-tenant
combination. In response to a determination that there already
is a repository designated for the requesting computing sys-
tem application-tenant combination, the request for data is
handled using the already existing repository designated for
the requesting computing system application-tenant combi-
nation. In response to a determination that there is no existing
repository designated for the requesting computing system
application-tenant combination: a new repository designated
for the requesting computing system application-tenant com-
bination is dynamically and automatically created at runtime,
without having to restart the computing system; the new
repository is dynamically and automatically configured at
runtime, without having to restart the computing system; and
the request for data is handled using the new repository fol-
lowing said dynamic and automatic configuring.

In certain example embodiments, a distributed, multi-ten-
ant computing system is provided. Processing resources
include at least one processor, and are configured to enable a
plurality of computing system applications to be performed.
Non-transitory storage media hosts a plurality of repositories
designated for different respective computing system appli-
cation-tenant combinations. Wherein the computing system
is configured to at least: receive, from a client application

US 9,270,546 B2

7

running on a client device, a request for data to be obtained
using at least one of said computing system applications, the
request being associated with a requesting computing system
application-tenant combination corresponding to a request-
ing tenant associated with the client application and the com-
puting system application(s) to be used in obtaining the data;
determine whether the non-transitory storage media already
stores a repository designated for the requesting computing
system application-tenant combination; in response to a
determination that there already is a repository designated for
the requesting computing system application-tenant combi-
nation, handle the request for data using the already existing
repository designated for the requesting computing system
application-tenant combination; and in response to a deter-
mination that there is no existing repository designated for the
requesting computing system application-tenant combina-
tion (a) dynamically and automatically create and configure,
at runtime, a new repository designated for the requesting
computing system application-tenant combination, without
having to restart the computing system and without having to
restart the computing system application(s) to be used in
obtaining the data, and (b) handle the request for data using
the new repository following said dynamic and automatic
configuring.

In certain example embodiments, a distributed, multi-ten-
ant computing system is provided and comprises processing
resources including at least one processor. Tenant installa-
tions are backed by virtual and/or physical machines and are
designated for respective tenants, with each said tenant instal-
lation supporting at least one application and at least one
repository accessible by and/or to the respective tenant, and
with each said repository being designated for a different
application-tenant combination. A web application or service
is configured to receive a request for a document from a client
application. The processing resources cooperate to provide to
the web application or service a response to the request for the
document from the client application such that: when a deter-
mination is made that there is a repository already in existence
for the specific combination of the tenant and the application
involved in the request, that repository is used in responding
to the request; and when a determination is made that there is
not a repository already in existence for the specific combi-
nation of the tenant and the application involved in the
request, a new repository is generated in cooperation with the
processing resources dynamically and at computing system
runtime, bootstrapping is performed for configuring the new
repository dynamically and at computing system runtime,
and that new repository is used in responding to the request.

Non-transitory computer readable storage mediums tangi-
bly storing instructions for performing the above-summa-
rized and/or other methods also are provided by certain
example embodiments, as well as corresponding computer
programs.

These features, aspects, advantages, and example embodi-
ments may be used separately and/or applied in various com-
binations to achieve yet further embodiments of this inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages may be better and
more completely understood by reference to the following
detailed description of exemplary illustrative embodiments in
conjunction with the drawings, of which:

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 1 is an example single-tenancy architecture;

FIG. 2 is a block diagram schematically demonstrating
issues that can arise in connection with highly-distributed,
multi-tenant scenarios;

FIG. 3 is a block diagram showing example components
that may be used in certain example embodiments;

FIG. 4 is a flowchart showing an example process that may
be used in connection with certain example embodiments;

FIG. 5is amore detailed block diagram showing bootstrap-
ping techniques that may be used in connection with certain
example embodiments; and

FIG. 6 is a more detailed flowchart showing bootstrapping
techniques that may be used in connection with certain
example embodiments.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Certain example embodiments use a bootstrapping tech-
nique to dynamically instantiate and configure repository
(e.g., database) connectivity for a multi-tenant application
(e.g., web application) on demand at runtime, e.g., in a highly
distributed environment such as a cloud computing environ-
ment. The example techniques set forth herein provide a
scalable and efficient solution that also is fault tolerant, in
certain example implementations. In certain example
embodiments, the bootstrapping is triggered dynamically the
first time a client application tries to access a specific reposi-
tory related to a newly created tenant at runtime, leading to a
flexible approach for enabling tenant- and application-spe-
cific repositories with optional search index mapping.

Referring now more particularly to the drawings in which
like reference numerals indicate like components throughout
the several views, FIG. 2 is a block diagram schematically
demonstrating issues that can arise in connection with highly-
distributed, multi-tenant scenarios. FIG. 2 shows two virtual
machine deployments. Virtual Machine A includes web ser-
vices 2024 that may be used for several tenants, as well as a
web application instance (e.g., in Apache Tomcat) 204a.
Similarly, Virtual Machine B includes web services 2025 that
may be used for several tenants, as well as a web application
instance (e.g, in Tomcat) 2045. However, when an application
instance is dynamically deployed in virtual or physical
machine (e.g., Virtual Machines A and/or B in FIG. 2), the
specific settings for all services (e.g., the connection settings
to the database that will be used, the name of the repository to
be references, the index name to be consulted, etc.) may not
be known in advance, e.g., if the environment uses several
repositories for different tenants and applications.

The main application therefore may need to handle, on-
demand and at runtime, several tenants with different web
application instances 2044 and 2045. Thus, new repositories,
etc., may need to be created and configured on-the-fly.

To find a specific database and get the connection details, a
registration service may be consulted directly, e.g., if a server-
side application is being used by the web application
instances 204a and/or 204b. If the request comes from a
remote client application that is not integrated into the eco-
system, for example, a load balancer 206 may be provided.
The load balancer 206 may help lead to an instance or instal-
lation that can handle the request. The web application server
thus may query the registry service, directly or indirectly, to
determine which, if any, running instances of the database fit
to the application/tenant combination being used.

A static repository may not be possible under these circum-
stances. Instead, on-demand, dynamical reactions to new
applications or tenants that come into play at a certain time
may be needed, e.g., to bring online and/or access a new

US 9,270,546 B2

9

instance 208 that includes a new permanent and/or other
repository 210 in that new instance 208. The same is true
when it comes to accessing a search index. That is, a static
search index may not be possible, and instead a new search
index 212 that corresponds with the new permanent reposi-
tory 210 that has been created may be created.

Certain example embodiments thus respond to the issues
raised in connection with FIG. 2. That is, because bootstrap-
ping at startup may not be possible, certain example embodi-
ments provide the ability to dynamically create at runtime
new repositories for new tenants and for several applications.
Furthermore, because index mapping for a search engine or
other feature may not be provided in advance, in addition or in
the alternative, certain example embodiments provide the
ability to create indices for new repositories on-the-fly, e.g., to
make the repository searchable.

FIG. 3 is a block diagram showing example components
that may be used in certain example embodiments. Having
several web applications 302a-302# deployed in distinct vir-
tual or physical machines 3044-304n, a running instance
would be selected for the client application 306 running on
the client computing device 308 (which may include process-
ing resources such as, for example, at least one processor 310
and a memory 312). This selection may be performed using a
load balancer 314 or, alternatively, it may be directly chosen,
e.g., if the client application 306 is a server-side web appli-
cation within the same ecosystem. Following the selection,
determinations are made as to who the tenant is who is trying
to access a repository, and which client application the
request is coming from (e.g., via a provisioning and/or user
management computing system 316 that includes at least one
processor 318 a memory 320 and program logic 322 in com-
munication with the deployments 304a-3047). With this
information, a lookup at the database 324 is initiated to deter-
mine whether a repository already exists and is available for
the combination of the tenant and application for which itis to
be used. The database 324 and repositories may, of course, be
hosted on a computing system that includes transitory and/or
non-transitory media, and the database 324 may be queried by
the provisioning and/or user management computing system
316, etc. The database 324 may be database that supports
SQL queries, it may be a NoSQL database, etc. The deploy-
ments 304a-3047 may be supported in a cloud computing
environment, e.g., where there is a processing system includ-
ing at least one processor, a memory, storage, and/or the like,
on one or more nodes that may or may not be distributed in
different implementations.

Certain example embodiments may use a pattern or other
naming scheme for identifying the correct repository. The
pattern may comprise or consist of the following and/or other
example information: the type of the storage (e.g., tempo-
rarily or permanent), the application acronym or other iden-
tifier, and the tenant ID. For instance, if there is an attempted
accession via a tenant “tenant1” and an application “appl”,
then a unique key would be created for the repository using
this information. An attempt to access the repository would be
made and, if the attempt fails, a repository with the generated
key would be created. In this example, the pattern generated
has the following format: “permanent_appl_tenantl”.

Determining whether a newly created repository needs a
search index may be performed by the first section of the
pattern. For instance, if the pattern contains the string “per-
manent,” it will be available for searching. In that case, an
index mapping may be created. The name of this mapping
may be made unique by using the same, similar, or different
structure for the name of the index as the name of the reposi-
tory. The name may be unique and refer directly to this exact

10

15

20

25

30

40

45

55

60

65

10

repository. Thus, it will be appreciated that the same structure
may, for example, be used for repository naming and index
naming, so both the index and the repository could be called
“permanent_appl_tenantl”. Alternative, or in addition, a
similar structure could be used such that the mapping is called
“permanent_appl_tenantl_mapping”, or the like. Such func-
tions may be undertaken by the provisioning and/or user
management computing system 316, e.g., in cooperation with
the database 324 and the newly created repository.

Such techniques are advantageous because they may in
certain example embodiments enable the web application to
scale at runtime, replicate it without significant downtimes,
provide a fault tolerant system, and/or the like, even if new
repositories need to be created at runtime for newly created
tenants and/or new applications that will make use of the web
application.

FIG. 4 is a flowchart showing an example process that may
be used in connection with certain example embodiments. In
step S402, a client application accesses a web application to
perform a desired task. The task might be anything and may
involve, for example, uploading or downloading data and/ora
document. To perform that operation, the web application
obtains a tenant ID that may be retrieved from, for example, a
user management system or the like, e.g., in step S404. If the
user from which this request comes from belongs to a tenant
that has not already been created, then the example tech-
niques described herein may come into play and the attendant
advantages realized. With this information, in step S406, the
location of the database server is obtained from the registry
where all running services may be listed, e.g., to find the
repositories of this specific tenant, assuming that they have
already been created.

Now that a server location on which the database (e.g., a
NoSQL document oriented database) runs is known, the web
application can attempt to access the database for the tenant in
step S408. If the database with the ID described above already
exists, the process is ended and the desired operation can take
place (e.g., the web application can write or retrieve the
requested data, etc.). Similar operations take place if a search
is being made for a document. That is, if an index has already
been created, the web application can search the index and
retrieve the result set from the database. Thus, as shown in
step S410, the desired operations are performed with respect
to the target repository and/or index, if possible, and the FIG.
4 process may be ended.

On the other hand, if the database and/or index is/are not
yet created, the components deemed necessary may be cre-
ated in step S412. This may involve, for example, the genera-
tion of a repository ID for the new database as described
above, the creation of repository, the registration of the newly
created repository with the database and/or registry, etc. If the
repository is of type “permanent,” step S414 involves the
creation of an index mapping for the search engine. The name
of'the index may have the same or similar naming convention
as the repository ID in certain example implementations.
After creating the index, it may be introduced into the data-
base with a search plug-in, it may be linked to the correspond-
ing changes feed of the newly created repository, etc., in step
S416. It will be appreciated that a changes feed in certain
example embodiments automatically provide information
about changes in the repository and, thus, this functionality
may be used to update a search index automatically by listen-
ing to the feed instead of polling or pushing the data to search
index, for example.

FIG. 5is amore detailed block diagram showing bootstrap-
ping techniques that may be used in connection with certain
example embodiments. In a highly-distributed environment,

US 9,270,546 B2

11

there are several applications that use the illustrative web
application or service 502. The applications are identified in
FIG. 5 as Apps 1, 2, 4, and n, although others may be pro-
vided. There is not a single, one application that can be
statically configured to use the web application or service 502
in the FIG. 5 example. Moreover, in this example, the highly-
distributed environment is a cloud computing environment,
and the web application or service 502 is provided for per-
forming document storage operations.

In FIG. 5, first and second installations 504a-5045 are
shown for Tenants A and B, respectively. Each of Tenants A
and B has licensed several applications in the ecosystem.
Each installation includes at least one repository for every
application used by the tenant associated with that installa-
tion, and this relationship may hold true for all tenants that are
available at present and/or will be present at a time in the
future.

Because of this relationship, it is possible to use one data-
base (e.g., one NoSQL database) at one node 506 to handle
several tenants and all of their respective applications. It will
be appreciated that the node 506 may be a physical node or
backed by a virtual machine or the like. If new capacity is
needed, it is possible to add a new node and begin creating
new repositories for new tenants, replicating a repository to a
new database, etc., e.g. if the data or traffic of one tenant
cannot be handled by a single node any longer.

The above-described relationship holds true for the other
tenants in the system. For instance, Tenant B has its own
repositories and can be run on the same node 506 as Tenant A.

When a client application 508 (which may in certain
example embodiments be a server-side application, a remote
client application, and/or the like) tries to download or upload
a document to the web application or service 502, an attempt
is made to retrieve the document from a specific application
that the corresponding tenant has licensed. In this regard, the
web application or service 502 attempts to determine where
the document might be found or might need to be stored.

To compile the repository ID, certain information is gath-
ered. This may include, for example, the tenant ID of the user
the request comes from, in addition to already-available infor-
mation including the application type or acronym, the reposi-
tory type (e.g., permanent or temporary), and the user token
itself. The tenant ID, for example, can be retrieved from the
user management system 510. The location where the data-
base and the search engine run and retrieve the information
from may be obtained from the registry service 512. This
information may be provided by a provisioning tool 514,
which helps provide these settings, as new instances are cre-
ated. The information that is provided may include, for
example, an absolute or relative path in a file system, a URL,
a GUID, a UUID, and/or the like. The provisioning tool 514
may in certain example embodiments alternative or addition-
ally be used to set up and maintain the entire environment (or
at least parts thereof), e.g., to startup new database instances,
register tenants, etc.

Once this information is known, the web application or
service 502 tries to connect to exactly that specific repository
at the database node 506 that was retrieved from the registry
service 512. It also determines if the repository has already
been created and is available on this node. To achieve this, a
request is made to the database and a check as to whether the
repository exists is made (e.g., in decision block 514). If the
repository already exists, it can be retrieved and delivered to
the web application or service 502 by requesting it directly,
e.g., as indicated by block 516. With that already-existing
repository, the web application or service 502 can store or
access the requested document on this database instance.

10

15

20

25

30

35

40

45

50

55

60

65

12

On the other hand, if decision block 514 determined that
the repository does not yet exist, it will be created with the
specific ID, e.g., as indicated in block 518. If the repository is
a “permanent” type repository, an index will be created as
indicated in block 520. The index may be named with the
same or similar pattern already used to create the repository
ID. This approach is advantageous in certain example
embodiments, e.g., in that it is feasible to connect this index
via a changes feed to the corresponding repository, to keep it
up-to-date, and to identify it easily when search requests
arrive at the application server. The newly created repository
is then directly available in the application server and can be
used for further requests, the initial request now being com-
pleted.

After the computation within the application server on the
specific repository (regardless of whether it is preexisting or
newly created), the document can be delivered to or uploaded
from the client application 508, e.g., as appropriate.

FIG. 6 is a more detailed flowchart showing bootstrapping
techniques that may be used in connection with certain
example embodiments. The FIG. 6 example process starts
when the web application or service 502 receives a request
from another application. In the illustrated example, the
application is designated “app1” and comes from a user that
belongs to a specific tenant called “tenant1”. The type of the
requested document is of type “permanent” storage. The web
application or service 502 compiles this information in step
S602 using the predefined pattern format and, in this example,
the pattern “permanent_appl_tenantl” is generated. The
generated pattern now can be used for a lookup operation. A
determination is made in step S604 as to whether the reposi-
tory including all technically related repositories, configura-
tions, index mappings, and/or the like already exists. If the
repository already exists, the connection details and so on are
delivered to the service layer that is responsible for retrieving
and processing the data, e.g., so that the desired information
can be operated on. Step S602 states “Compile pattern for
lookup for repository and/or search index” and, thus, it will be
appreciated that the example techniques discussed herein
may be used in connection with looking up a search index. It
will be appreciated that this may be accomplishing in a simi-
lar manner to that described herein (although minor modifi-
cations may apparent to those skilled in the art could be
implemented, e.g., if there were already a repository and only
an index needed to be created, other bootstrapping processes
were leveraged, etc.).

If the repository does not exist, bootstrapping is triggered
in step S606, with all of its associated technical implications.
A check is made in step S608 as to whether the already-
compiled repository pattern contains the string “permanent.”
All technically related processes that are needed for further
operations may also be prepared, e.g., as discussed above.
One example could b the lookup or creation of a search index.

If the repository pattern contains the string “permanent”,
the actual main repository and the related technical reposito-
ries are created in step S610. In this example situation, one
repository is created for the configuration settings of exactly
this tenant, and one repository that contains already-com-
puted links for accessing special data via a HT'TP client, like
a web browser, is created as well.

The main repository may need to be searchable. This may
be expressly specified, or inferred from the presence of the
string “permanent” in its ID. For instance, in this example
scenario, it might be desirable to be able to search for meta-
data of all stored documents or files. Similarly, it might be
desirable to perform a full-text search for text documents that
satisfy specific criteria, like “has to be a file of type PDF or

US 9,270,546 B2

13

plain text and doesn’t exceed the maximum file size for the
indexation”, etc. Thus, after creating the index mapping for
the full text search, it might be desirable to ensure that meta-
data also is searchable. These operations for setting up such
searches are shown in FIG. 6 in connection with step S612.

To enable searches in the metadata of the stored files, step
S614 involves configuring and activating a search plug-in for
the search engine. The search plug-in may be directly con-
nected to the database in certain example embodiments. To
keep the index up to date in real-time, the plug-in may be
correctly configured and connected to the changes feed of the
database or, more precisely, connected to the corresponding
database instance that is elected to handle the data of the
current tenant. For instance, as indicated above, connection to
a changes feed may be a part of the technical preparation for
automatic configuration of a searchable repository, and it thus
could in some implementations be a further example of the
technical needs for an example bootstrapping process.

Once steps S612 and S614 are taken, the repository bundle
with the search is enabled in step S616. It also now becomes
possible to update the information in the registry service with
the changes to the assignments of this tenant and prepare the
newly created repositories with their initial settings, e.g., as
shown in step S618. The new permanent repository is pro-
vided with already stored data and/or is formatted appropri-
ately, e.g., at the time a user of a newly created tenant accesses
it. For example, a root folder may be established, and a design
documents for the view that will be created on demand may
be stored therein. It will be appreciated that a design docu-
ment can be any document that is required to be able to use the
repository such as, for example, a configuration file, JavaS-
cript snippet used to query data comparable to a stored pro-
cedure in an RDBMS, etc. After everything needed is created
at runtime, this root folder can be created and the design
documents for all newly created repositories can be saved
thereto.

Referring once again to the decision made in step S608, if
the repository pattern does not contain the string “perma-
nent”, only the repository is created, e.g., for temporary stor-
age, in step S620. Step S618 then performs the appropriate
configuration for the newly created temporary repository. It
will be appreciated that the implementation details might be
altered in some cases, as between permanent and temporary
repositories. For example, as alluded to here, there typically is
not a search index for the temporary repository, the number
and/or type of design documents may differ, etc.

In step S622, the information about the requested reposi-
tory is returned to the service layer of the web application or
service 502 to process and send or retrieve the data. Finally,
the content is returned to the client application from the web
application or service 502, and the process ends.

The techniques of certain example embodiments are able
to react dynamically to newly created tenants and are able to
scale horizontally and use available resources very efficiently.
That is, certain example embodiments advantageously enable
horizontal scaling by making use of additional database
instances that may deployed by a provisioning tool or the like,
on demand. Thus, certain example embodiments are not nec-
essarily limited to a fixed number of tenants or repositories
and can distribute data (potentially equally) across instances.
Indeed, it may be possible in certain example embodiments to
directly access the repository for new tenants or new appli-
cations that will eventually come into play without taking
down the server infrastructure. It follows that the server infra-
structure of certain example embodiments is more failsafe
and overall availability is improved.

20

25

35

40

45

50

65

14

Although certain example embodiments have been
described in connection with having several web applications
302a-3027 deployed in distinct virtual or physical machines
304a-304n, it will be appreciated that certain implementa-
tions may implement multiple web applications on a single
virtual or physical machine, one application across one or
more virtual or physical machines, etc.
It will be appreciated that as used herein, the terms system,
subsystem, service, engine, module, programmed logic cir-
cuitry, and the like may be implemented as any suitable com-
bination of software, hardware, firmware, and/or the like. It
also will be appreciated that the storage locations herein may
be any suitable combination of disk drive devices, memory
locations, solid state drives, CD-ROMs, DVDs, tape backups,
storage area network (SAN) systems, and/or any other appro-
priate tangible non-transitory computer readable storage
medium. Cloud and/or distributed storage (e.g., using file
sharing means), for instance, also may be used in certain
example embodiments. It also will be appreciated that the
techniques described herein may be accomplished by having
at least one processor execute instructions that may be tangi-
bly stored on a non-transitory computer readable storage
medium.
While the invention has been described in connection with
what is presently considered to be the most practical and
preferred embodiment, it is to be understood that the inven-
tion is not to be limited to the disclosed embodiment, but on
the contrary, is intended to cover various modifications and
equivalent arrangements included within the spirit and scope
of'the appended claims.
What is claimed is:
1. A method of managing a distributed, multi-tenant com-
puting system comprising at least one processor and non-
transitory storage media hosting a plurality of repositories
designated for different respective computing system appli-
cation-tenant combinations, the method comprising:
receiving, from a client application running on a client
device, a request for data to be obtained using a comput-
ing system application, the request being associated
with a requesting computing system application-tenant
combination that is based on a requesting tenant associ-
ated with the client application and the computing sys-
tem application to be used in obtaining the data;

determining, using the computing system, whether the
non-transitory storage media already stores a repository
designated for the requesting computing system appli-
cation-tenant combination;

inresponse to a determination that there already is a reposi-

tory designated for the requesting computing system
application-tenant combination, handling the request for
data using the already existing repository designated for
the requesting computing system application-tenant
combination; and

in response to a determination that there is no existing

repository designated for the requesting computing sys-

tem application-tenant combination:

dynamically and automatically creating at runtime a
new repository designated for the requesting comput-
ing system application-tenant combination, without
having to restart the computing system,

dynamically and automatically configuring the new
repository at runtime, without having to restart the
computing system, and

handling the request for data using the new repository
following said dynamic and automatic configuring.

2. The method of claim 1, wherein the determining is
performed in connection with a naming scheme.

US 9,270,546 B2

15

3. The method of claim 2, wherein each said repository has
a unique name by virtue of the naming scheme.

4. The method of claim 2, wherein the naming scheme
produces unique keys usable by the computing system appli-
cation to access and/or determine the existence of the respec-
tive repositories, each said key being based on an indication
of'a way in which the respective repository is to be stored, an
application identifier, and a tenant identifier.

5. The method of claim 4, wherein permissible ways in
which the repositories are storable include permanent and
temporary storage types.

6. The method of claim 1, wherein permissible ways in
which the repositories are storable include permanent and
temporary storage types.

7. The method of claim 6, wherein the response to the
determination that there is no existing repository designated
for the requesting computing system application-tenant com-
bination further comprises creating a new search index map-
ping, provided that the new repository is a permanent storage
type repository.

8. The method of claim 7, wherein created search index
mappings are named and/or addressable using the same nam-
ing scheme as that used for the respective repositories.

9. The method of claim 7, further comprising connecting
the new search index mapping to a changes feed from the
corresponding repository to enable continuous updating of
the search index mapping.

10. The method of claim 1, further comprising when the
client application is a server-side application, relaying from a
registry server to the client application an indication as to
whether the non-transitory storage media already stores a
repository designated for the requesting computing system
application-tenant combination in response to a direct query
from the client application to the registry server.

11. The method of claim 1, further comprising at least
when the client device is external to the computing system’s
ecosystem, relaying from a registry server to the client appli-
cation an indication as to whether the non-transitory storage
media already stores a repository designated for the request-
ing computing system application-tenant combination in
response to a query from the client application to the registry
server made via a load balancer.

12. The method of claim 1, wherein the computing system
application is a web application.

13. The method of claim 1, wherein at least some of the
repositories are NoSQL databases.

14. At least one non-transitory computer readable storage
medium tangibly storing instructions that are performable to
accomplish at least the method of claim 1.

15. A distributed, multi-tenant computing system, com-
prising:

processing resources including at least one processor and

configured to enable a plurality of computing system
applications to be performed; and

non-transitory storage media hosting a plurality of reposi-

tories designated for different respective computing sys-
tem application-tenant combinations;

wherein the computing system is configured to at least:

receive, from a client application running on a client
device, a request for data to be obtained using at least
one of said computing system applications, the
request being associated with a requesting computing
system application-tenant combination correspond-
ing to a requesting tenant associated with the client
application and the computing system application(s)
to be used in obtaining the data;

10

15

20

25

30

35

40

45

50

55

60

16

determine whether the non-transitory storage media
already stores a repository designated for the request-
ing computing system application-tenant combina-
tion;

in response to a determination that there already is a
repository designated for the requesting computing
system application-tenant combination, handle the
request for data using the already existing repository
designated for the requesting computing system
application-tenant combination; and

in response to a determination that there is no existing
repository designated for the requesting computing
system application-tenant combination: (a) dynami-
cally and automatically create and configure, at runt-
ime, a new repository designated for the requesting
computing system application-tenant combination,
without having to restart the computing system and
without having to restart the computing system appli-
cation(s) to be used in obtaining the data, and (b)
handle the request for data using the new repository
following said dynamic and automatic configuring.

16. The system of claim 15, wherein the repositories are
accessible via a naming scheme.

17. The system of claim 16, wherein the naming scheme
produces unique keys usable by the computing system appli-
cations to access the repositories and/or determine whether
individual ones of the repositories exist, each said key being
based on (a) an indication of a way in which the respective
repository is to be stored, (b) an application identifier, and (c)
a tenant identifier.

18. The system of claim 15, wherein permissible ways in
which the repositories are storable include permanent and
temporary storage types.

19. The system of claim 18, wherein the response to the
determination that there is no existing repository designated
for the requesting computing system application-tenant com-
bination further involves creating a new search index map-
ping, provided that the new repository is a permanent storage
type repository.

20. The system of 19, wherein at least some of the reposi-
tories are configured to generate a changes feed, and wherein
search index mappings are connectable to changes feeds from
corresponding repositories to enable updating of the search
index mappings.

21. The system of claim 15, further comprising a registry
server that is configured to:

(a) accept a direct query from the client application as to

whether the non-transitory storage media already stores
a repository designated for the requesting computing
system application-tenant combination and provide a
response thereto, provided that the client application is a
server-side application, and

(b) respond to a query from the client application to the

registry server made via a load balancer as to whether the
non-transitory storage media already stores a repository
designated for the requesting computing system appli-
cation-tenant combination, at least when the client
device is external to the computing system.

22. The system of claim 15, wherein the computing system
application is a web application and at least some of the
repositories are NoSQL databases.

23. A distributed, multi-tenant computing system, com-
prising:

processing resources including at least one processor;

a plurality of tenant installations backed by virtual and/or

physical machines and designated for respective tenants,
each said tenant installation supporting at least one

US 9,270,546 B2

17

application and at least one repository accessible by
and/or to the respective tenant, each said repository
being designated for a different application-tenant com-
bination; and
aweb application or service configured to receive a request
for a document from a client application;
wherein the processing resources cooperate to provide to
the web application or service a response to the request
for the document from the client application such that:
when a determination is made that there is a repository
already in existence for the specific combination of
the tenant and the application involved in the request,
that repository is used in responding to the request;
and
when a determination is made that there is not a reposi-
tory already in existence for the specific combination
of the tenant and the application involved in the
request, a new repository is generated in cooperation
with the processing resources dynamically and at
computing system runtime, bootstrapping is per-
formed for configuring the new repository dynami-
cally and at computing system runtime, and that new
repository is used in responding to the request.
24. The system of claim 23, further comprising:
auser management subsystem configured to provide to the
web application or service a tenant identifier for the
tenant associated with the client application;

10

15

20

25

18

a registry configured to provide to the web application or
service a server location for the tenant associated with
the client application; and

a provisioning subsystem configured to register tenants
with the registry.

25. The system of claim 23, wherein:

the repositories are accessible via a naming scheme that
produces unique keys usable in accessing the reposito-
ries and/or determining whether they exist, each said key
being based on (a) an indication of a way in which the
respective repository is to be stored, (b) an application
identifier, and (c) a tenant identifier;

permissible ways in which the repositories are storable
include permanent and temporary storage types;

the processing resources further cooperate to provide to the
web application or service a response to the request for
the document from the client application such that when
the determination is made that there is not a repository
already in existence for the specific combination of the
tenant and the application involved in the request, a new
search index mapping is created, provided that the new
repository is a permanent storage type repository and not
a temporary storage type repository; and

the naming scheme also is used for search index mappings.

#* #* #* #* #*

